Home
Class 14
MATHS
" 57."((1)/(sec^(2)theta-cos^(2)theta)+(...

" 57."((1)/(sec^(2)theta-cos^(2)theta)+(1)/(cosec^(2)theta-sin^(2)0))sin^(2)theta cos^(2)theta=(1-sin^(2)theta cos^(2)theta)/(2+sin^(2)theta cos^(2)theta)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following identity: ((1)/(sec^(2)theta-cos^(2)theta)+(1)/(cos ec^(2)theta-sin^(2)theta))sin^(2)theta cos^(2)theta=(1-sin^(2)theta cos^(2)theta)/(2+sin^(2)cos^(2)theta)

sec^(2)theta-(sin^(2)theta-2sin^(4)theta)/(2cos^(4)theta-cos^(2)theta)=1

(sec^(2)theta-sin^(2)theta)/(tan^(2)theta)=cosec^(2)theta-cos^(2)theta

If cos theta+cos^(2)theta=1 then sin^(2)theta+2sin^(2)theta+sin^(2)theta=

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=?

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=?

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta) =

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=?

The value of sin^(2)theta cos^(2)theta(sec^(2)theta+cosec^(2)theta)-1 is

(1+sin 2theta+cos 2theta)/(1+sin2 theta-cos 2 theta) =