Home
Class 12
MATHS
" Show That "[-a^(2),ab,ac],[ab,-b^(2),b...

" Show That "[-a^(2),ab,ac],[ab,-b^(2),bc],[ac,bc,-c^(2)]|=4a^(2)b^(2)c^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

|(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))|=

Prove that |(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))| = 4a^(2)b^(2)c^(2) .

Show that Delta=abs[[-a^2,ab,ac],[ba,-b^2,bc],[ac,bc,-c^2]]=4a^2b^2c^2

Prove the following by multiplication of determinants and power cofactor formula |{:(0,c,b),(c,0,a),(b,a,0):}|^(2)=|{:(b^(2)+v^(2),ab,ac),(ab,c^(2)+a^(2),bc),(ac,bc,a^(2)+b^(2)):}| =|{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}|=4a^(2)b^(2)c^(2)

Using the properties of determinant, show that : |[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]| = 1+a^2+b^2+c^2

Prove the following: [[-a^2,ab,ac],[ab,-b^2,bc],[ac,bc,-c^2]]=4a^2b^2c^2

|(a^(2)+1,ab,ac),(ab,b^(2)+1,bc),(ac,bc,c^(2)+1)|=

|(a^(2)+x,ab,ac),(ab,b^(2)+x,bc),(ac,bc,c^(2)+x)|

If A=[(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2))] and a^(2)+b^(2)+c^(2)=1 , then A^(2)=

Prove that |[a^2,bc,ac+c^2],[a^2+ab,b^2,ac],[ab,b^2+bc,c^2]|=4a^2b^2c^2