Home
Class 12
MATHS
निम्न अवकल समीकरणों की कोटि तथा घात लिखि...

निम्न अवकल समीकरणों की कोटि तथा घात लिखिये
(i) `dy+(3x+cotx)dx=0`
(ii) `(d^(2)y)/(dx^(2))+y((dy)/(dx))+1=0`
(iii) `L(d^(2)Q)/(dt^(2))+R(dQ)/(dt)+(Q)/(c)=0`
(iv) `(d^(3)y)/(dx^(3))+x(d^(2)y)/(dx^(2))+2y((dy)/(dx))^(2)+xy=0`
(v) `(d^(2)r)/(dx^(2))=4sqrt(1+((dr)/(d""theta))^(2))`
(vi) `((d^(2)y)/(dx^(2)))^(3//2)=(x+(dy)/(dx))^(1//2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

x(d^(2)y)/(dx^(2))+(dy)/(dx)+x=0

If y=log(1+sinx)," then "(d^(3)y)/(dx^(3))+(d^(2)y)/(dx^(2))(dy)/(dx)=

y=log(1+cos x), prove that (d^(3)y)/(dx^(3))+(d^(2)y)/(dx^(2))*(dy)/(dx)=0

(d^(2)x)/(dy^(2)) equals: (1)((d^(2)y)/(dx^(2)))^(-1) (2) -((d^(2)y)/(dx^(2)))^(-1)((dy)/(dx))^(-3)(3)-((d^(2)y)/(dx^(2)))^(-1)((dy)/(dx))^(-2)(4)-((d^(2)y)/(dx^(2)))^(-1)((dy)/(dx))^(3)

If y=log(1+cos x), prove that (d^(3)y)/(dx^(3))+(d^(2)y)/(dx^(2))(dy)/(dx)=0

(d^(2)x)/(dy^(2)) equals a. ((d^(2)y)/(dx^(2)))^(-1) b. -((d^(2)y)/(dx^(2)))^(-1)((dy)/(dx))^(-3) c. ((d^(2)y)/(dx^(2)))((dy)/(dx))^(-2) d. -((d^(2)y)/(dx^(2)))((dy)/(dx))^(-3)

" 2"(d^3y)/(dx^(3))+(d^2y)/(dx^(2))-(dy)/(dx)-y=0 find degree and order.

(d^2x)/(dy^2) equals: (1) ((d^2y)/(dx^2))^(-1) (2) -((d^2y)/(dx^2))^(-1)((dy)/(dx))^(-3) (3) ((d^2y)/(dx^2))^(-1)((dy)/(dx))^(-2) (4) -((d^2y)/(dx^2))^(-1)((dy)/(dx))^(-3)

If x=log pandy=(1)/(p), then (a) (d^(2)y)/(dx^(2))-2p=0 (b) (d^(2)y)/(dx^(2))+y=0 (c) (d^(2)y)/(dx^(2))+(dy)/(dx)=0( d) (d^(2)y)/(dx^(2))-(dy)/(dx)=0

(d^2x)/(dy^2) equals: (1) ((d^2y)/(dx^2))^(-1) (2) -((d^2y)/(dx^2))^(-1)((dy)/(dx))^(-3) (3) ((d^2y)/(dx^2))^(-1)((dy)/(dx))^(-2) (4) -((d^2y)/(dx^2))((dy)/(dx))^(-3)