Home
Class 10
MATHS
If a b c are the p^(th), q^(th) and r^(t...

If a b c are the `p^(th)`, `q^(th)` and `r^(th)` terms of an AP then prove that `sum a(q-r)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are respectively the p^(th),q^(th),r^(th) terms of an A.P.,then prove that a(q-r)+b(r-p)+c(p-q)=0

If a, b and c are respectively the p^(th) , q^(th) and r^(th) terms of an A.P., then |(a" "p" "1),(b" "q" "1),(c" "r" "1)|=

If the p^(th),q^(th) and r^(th) terms of a H.P.are a,b,c respectively,then prove that (q-r)/(a)+(r-p)/(b)+(p-q)/(c)=0

If the p^(th), q^(th) and r^(th) terms of a H.P. are a,b,c respectively, then prove that (q - r)/(a) + (r - p)/(b) + (p - q)/(c) = 0

If a,b,c are respectively the p^(th), q^(th) and r^(th) terms of the given G.P. then show that (q - r) log a + (r - p) log + (p - q) log c = 0, where a, b, c gt 0

If a,b,c are respectively the p^(th), q^(th) and r^(th) terms of the given G.P. then show that (q - r) log a + (r - p) logb + (p - q) log c = 0, where a, b, c gt 0

If a,b,c are respectively the p^(th),q^(th) and r^(th) terms of a G.P.show that (q-r)log a+(r-p)log b+(p-q)log c=0