Home
Class 12
MATHS
[" Diatis Physics Chemistry "],[" 4"int(...

[" Diatis Physics Chemistry "],[" 4"int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx" is equal to "],[" 9"A],[(x^(10))/(2(1+x^(3)+x^(5))^(4))+c],[" O "B],[(x^(2)+2x)/((x^(5)+x^(3)+1)^(4))+c]

Promotional Banner

Similar Questions

Explore conceptually related problems

int((2x^(12)+5x^(9))dx)/((x^(5)+x^(3)+1)^(3))

The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to

The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to

the integral int (2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to

int((9x^(2)-4x+5))/((3x^(3)-2x^(2)+5x+1))dx

The integral int[2x^[12]+5x^9]/[x^5+x^3+1]^3.dx is equal to-

The integral int(2x^(12)+5x^(9))/([x^(5)+x^(3)+1]^(3))*dx is equal to- (A) (x^(10))/(2(x^(5)+x^(3)+1)^(2))(B)(x^(5))/(2(x^(5)+x^(3)+1)^(2))(C)-(x^(10))/(2(x^(5)+x^(3)+1)^(2))(D)-(x^(5))/(2(x^(5)+x^(3)+1)^(2))

int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx=(x^(p))/(q(x^(5)+x^(3)+1)^(r))+c , then p-q-r =

The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to: (1)(-x^(5))/((x^(5)+x^(3)+1)^(2))+C(2)(x^(5)x^(3))/(2(x^(5)+x^(3)+1)^(2))+C(3)(x^(5))/(2(x^(5)+x^(3)+1)^(2))+C(4)(-x^(3)+x^(3))/(2(x^(5)+x^(3)+1)^(2))+C where C is an arbitrary constant.

The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to (where C is a constant of integration)