Home
Class 12
MATHS
if x =loga (bc), y= logb (ca) and z=logc...

if `x =log_a (bc), y= log_b (ca) and z=log_c(ab)` then `1/(x+1)+1/(y+1)+1/(z+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

if =log_(a)(bc),y=log_(b)(ca) and z=log_(c)(ab) then (1)/(x+1)+(1)/(y+1)+(1)/(z+1)

If x=log_(a)(bc),y=log_(b)(ca),z=log_(c)(ab) then (1)/(x+1)+(1)/(y+1)+(1)/(z+1) is equal to

If x = log_(a)(bc), y = log_(b)(ca), z = log_(c)(ab) , then find 1/(x+1) + 1/(y+1) + 1/(z+1)

If x = log_(a)^(bc) , y = log_(b)^(ca) and z = log_(c)^(ab) then show that frac(1)(x+1)+frac(1)(y+1)+frac(1)(z+1) = 1 , [abc ne 1]

If x=log_(a)(bc),y=log_(b)(ca) and z=log_(c )(ab) show that x+y+z+2=xyz

If x = log_(a) bc, y = log_(b) ca, z = log_(c) ab, then the value of (1)/(1 + x) + (1)/(1 + y) + (1)/(l + z) will be

If x=log_(a)(bc),y=log_(b)(ca)" and "z=log_(c)(ab) , then which of the following is equal to 1 ?

If x ="log"_(a)(bc), y ="log"_(b)(ca) " and "z = "log"_(c)(ab), then which of the following is correct?

If x ="log"_(a)(bc), y ="log"_(b)(ca) " and "z = "log"_(c)(ab), then which of the following is correct?

If x=1 + log_(a)(bc) , y=1 +log_(b)(ca) and z=1+ log_(c )(ab) prove that xy+yz+zx=xyz