Home
Class 11
MATHS
If x1=cos^-1(3/5)+cos^-1((2sqrt2)/(3)) a...

If `x_1=cos^-1(3/5)+cos^-1((2sqrt2)/(3)) and x_2=sin^-1(3/5)+sin^-1((2sqrt2)/(5)),` then

Promotional Banner

Similar Questions

Explore conceptually related problems

If x_1=cos^(-1)(3/5)+cos^(-1)((2sqrt2)/3)and x_2=sin^(-1)(3/5)+sin^(-1)((2sqrt2)/3) , then

If x_1=cos^(-1)(3/5)+cos^(-1)((2sqrt2)/3)and x_2=sin^(-1)(3/5)+sin^(-1)((2sqrt2)/3) , then

If x=sin(2tan^(-1)2sqrt3)and y=sin((1)/(2)tan^(-1).(12)/(5)) , then

Let alpha = tan^-1 (1/2)+tan^-1(1/3) , beta=cos^-1(2/3)+cos^-1(sqrt5/3) , gamma=sin^-1(sin((2pi)/3))+1/2cos^-1(cos((2pi)/3)) then cosalpha+cosbeta+cosgamma is equal to (A) (sqrt(2)-1)/2 (B) (sqrt(2)+1)/2 (C) (sqrt(2)+sqrt(3))/2 (D) ((sqrt(3)-sqrt(2))/2)

sin^(-1)(1/sqrt5)+cos^(-1)(3/sqrt(10))

cos(sin^-1 (3/5)+ cot^-1(3/2)) = 6/(5sqrt13)

If alpha=sin(sin^(-1)( 1/sqrt3)/(3)),beta=cos(cos^(-1)((1)/(sqrt(5)))-sin^(-1)((2)/(sqrt(5)))) then (beta^(2))/((3 alpha-4a^(3))^(2)) is

Prove that tan^-1 (1/4) + tan^-1 (2/9) = 1/2 cos^-1 (3/5) = sin^-1(1/sqrt5)