Home
Class 11
MATHS
Let cos^-1 (x/2)+cos^-1 (y/3)=theta and ...

Let `cos^-1 (x/2)+cos^-1 (y/3)=theta` and denote by `f(x,y,theta)=0` the rational integeral expression in `x and y.` Then for `theta=pi/2` the locus represented by `f(x,y,pi/2)=0` is (A) an ellipse (B) parabola (C) hyperbola (D) pair of lines

Promotional Banner

Similar Questions

Explore conceptually related problems

The locus of the centre of the circle x^(2)+y^(2)+4x cos theta-2y sin theta-10=0 is (A) An ellipse(B) A circle(C) A hyperbola

x=a cos theta, y=a sin theta is a parametric form of : (A) Parabola (B) Hyperbola (C) Ellipse (D) Circle

Equation x = 4 cos theta and y = 3 sin theta , theta in (-pi,pi) denotes ellipse .

If x sin^(3) theta + y cos^(3) theta = sin theta cos theta ne 0 and x sin theta - y cos theta = 0 , then value of (x^(2) + y^(2)) is :

If x=a ( theta - sin theta), y =a (1 - cos theta) then y _(2) at theta = pi //4 is

If x= a (theta+ sin theta), y =a ( 1- cos theta) then prove that at theta = (pi)/(2), y'' = (1)/(a) .

If x = a(1+ cos theta), y = a (theta + sin theta) , then (d^(2)y)/(d x^(2)) at theta = (pi)/(2) is

If x = X cos theta- Y sin theta, y = X sin theta + Y cos theta and x^2 + 4 x y + y^2 = A X^2 + B Y^2 0 <= theta <= pi/2, then