Home
Class 11
MATHS
If x+1/x=2 and [sin^-1 y] where [ ] rep...

If `x+1/x=2 and [sin^-1 y]` where [ ] represents the greatest integer function, then the minimum value of `sin^1x + sin^-1 y` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

If [sin^(-1)x]^(2)+[sin^(-1)x]-2 le 0 (where, [.] represents the greatest integral part of x), then the maximum value of x is

If [sin^(-1)x]^(2)+[sin^(-1)x]-2 le 0 (where, [.] represents the greatest integral part of x), then the maximum value of x is

Let f (x) = cosec^-1[1 + sin^2x], where [*] denotes the greatest integer function, then the range of f

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.