Home
Class 11
MATHS
Let f(x) = cosec^-1[1 + sin^2x], where [...

Let f`(x) = cosec^-1[1 + sin^2x], where [*]` denotes the greatest integer function, then the range of f

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function. then range of f(x) is

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the range of f(x) is

Let f(x) = sec^(-1)[1 + cos^(2) x] , wheb denotes the greatest integer function. Then the range of (x) is

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then