Home
Class 10
MATHS
If x=-""^(n)C(1)+""^(n)C(2)(2)-""^(n)C(3...

If `x=-""^(n)C_(1)+""^(n)C_(2)(2)-""^(n)C_(3)(2)^(2)+....` (where n is odd), then x=___________

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that (n !)/(x(x+1)(x+2)...(x+n))=(""^(n)C_(0))/(x)-(""^(n)C_(1))/(x+1) + (""^(n)C_(2))/(x+2)-(""^(n)C_(3))/(x+3) + ...+ ((-1)^(n)""^(n)C_(n))/(x+n) .

If (1+x)^(n)=1+""^(n)C_(1)x+""^(n)C_(2)x^(2)+….+""^(n)C_(n) x^(n) show that, n*2^(n-1)=""^(n)C_(1)+2*""^(n)C_(2)+….. +n*""^(n)C_(n) .

If (1+x)^(n)=^(n)C_(0)+^(n)C_(1)x+^(n)C_(2)x^(2)+…+^(n)C_(n)x^(n) , prove that, nC_(1)-2^(n)C_(2)+3^(n)C_(3)-…+(-1)^(n-1).n^(n)C_(n)=0 .

Prove that 1-""^(n)C_(1) (1+x)/(1+n x)+""^(n)C_(2) (1+2x)/((1+n x)^(2)) ""^(n)C_(3) (1+3x)/((1+n x)^(3)) +….(n+1) terms = 0

If (1+a)^(n)=.^(n)C_(0)+.^(n)C_(1)a+.^(n)C_(2)a^(2)+ . . +.^(n)C_(n)a^(n) , then prove that .^(n)C_(1)+2.^(n)C_(2)+3.^(n)3C_(3)+ . . .+n.^(n)C_(n)=n.2^(n-1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) *""^(2n)C_(n) - C_(1) *""^(2n-2)C_(n) + C_(2) *""^(2n-4) C_(n) -…= 2^(n)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3)x^(3) + ...+ C_(n)x^(n) , prove that (C_(1))/(2) + (C_(3))/(4) + (C_(5))/(6) + …= (2^(n+1)-1)/(n+1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3)x^(3) + ...+ C_(n)x^(n) , prove that (C_(1))/(2) + (C_(3))/(4) + (C_(5))/(6) + …= (2^(n)-1)/(n+1) .

The value of ""(n)C_(1). X(1 - x )^(n-1) + 2 . ""^(n)C_(2) x^(2) (1 - x)^(n-2) + 3. ""^(n)C_(3) x^(3) (1 - x)^(n-3) + ….+ n ""^(n)C_(n) x^(n) , n in N is