Home
Class 12
PHYSICS
If V=2r^(2) then find (i) vec(E) (1, 0, ...

If `V=2r^(2)` then find (i) `vec(E) (1, 0, -2)` (ii) `vec(E) (r=2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If E=2r^(2) then find V(r)

If E=2r^(2) then find V(r)

V=x^(2)+y . Find vec(E) .

V=x^(2)+y . Find vec(E) .

Consider the equations of the straight lines given by : L_(1) : vec(r) = (hati + 2 hatj + hatk ) + lambda ( hati - hatj + hatk) L_(2) : vec(r) = (2 hati - hatj - hatk) + mu ( 2 hati + hatj + 2 hatk) . If vec(a_(1))= hati + 2 hatj + hatk, " " vec(b_(1)) = hati - hatj + hatk , vec(a_(2)) = 2 hat(i) - hatj - hatk, vec(b_(2)) = 2 hati + hatj + 2 hatk , then find : (i) vec(a_(2)) - vec(a_(1)) " " (ii) vec(b_(2)) - vec(b_(1)) (iii) vec(b_(1))xx vec(b_(2)) " " (iv) vec(a_(1)) xx vec(a_(2)) (v) (vec(b_(1)) xx vec(b_(2))).(vec(a_(1)) xxvec(a_(2))) (vi) the shortest distance between L_(1) and L_(2) .

If vec(r )= x vec(i) + y vec(j) + z vec(k) then find (vec(r ) xx vec(i))^(2)- (vec(r )xx vec(k))^(2)

If vec(E)_(1) and vec(E)_(2) are electric field at axial point and equatorial point of an electric dipole, then (1) vec(E)_(1).vec(E)_(2)gt 0 (2) vec(E)_(1).vec(E)_(2)=0 (3) vec(E)_(1).vec(E)_(2)lt 0 (4) vec(E)_(1)+vec(E)_(2)=vec(0)

If vec(E)_(1) and vec(E)_(2) are electric field at axial point and equatorial point of an electric dipole, then (1) vec(E)_(1).vec(E)_(2)gt 0 (2) vec(E)_(1).vec(E)_(2)=0 (3) vec(E)_(1).vec(E)_(2)lt 0 (4) vec(E)_(1)+vec(E)_(2)=vec(0)

how will you combine vec(E ) and vec(A) such that their vector sum is (i) vec(A) (ii) vec(E ) (iii) 2 vec(A)

Referring to the spherical equipotential lines in (Fig. 3.36)A, find (i) vec E = f ( r) (ii) vec E - pattern. a. . b. . c. .