Home
Class 9
MATHS
f(x)=9x^(3)-3x^(2)+x-5,g(x)=x-(2)/(3)...

f(x)=9x^(3)-3x^(2)+x-5,g(x)=x-(2)/(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=2x^(3)-9x^(2)+x+12,g(x)=3-2x

f(x)=3x^(4)+2x^(3)-(x^(2))/(3)-(x)/(9)+(2)/(27),g(x)=x+(2)/(3)

Find gof and fog wehn f:R rarr R and g:R rarr R are defined by f(x)=2x+3 and g(x)=x^(2)+5f(x)=2x+x^(2) and g(x)=x^(3)f(x)=x^(2)+8 and g(x)=3x^(3)+1f(x)=8x^(3) and g(x)=x^(1/3)+1f(x)=8x^(3) and

If f(x)=2x^(3)+9x^(2)+x+k and g(x) = x -1 be two polynomials, then g(x) will be factor of f(x) when k =

Find the HCF of the polynomials f(x)= 6(x^(3) +3x^(2)) (x^(2)-16) (x^(2) + 9x + 18) and g(x) = 8(x^(4) + 4x^(3)) (x^(2) + 6x + 9)^(2)

Factorise: (i) x^(3)-2x^(2)-x+2 (ii) x^(3)-3x^(2)-9x-5 (iii) x^(3)+13x^(2)+32x+20 (iv)

Find the intervals in which the following function are increasing or decreasing. f(x)=10-6x-2x^2 f(x)=x^2+2x-5 f(x)=6-9x-x^2 f(x)=2x^3-12 x^2+18 x+15 f(x)=5+36 x+3x^2-2x^3 f(x)=8+36 x+3x^2-2x^3 f(x)=5x^3-15 x^2-120 x+3 f(x)=x^3-6x^2-36 x+2 f(x)=2x^3-15 x^2+36 x+1 f(x)=2x^3+9x^2+20 f(x)=2x^3-9x^2+12 x-5 f(x)=6+12 x+3x^2-2x^3 f(x)=2x^3-24 x+107 f(x)=-2x^3-9x^2-12 x+1 f(x)=(x-1)(x-2)^2 f(x)=x^3-12 x^2+36 x+17 f(x)=2x^3-24+7 f(x)=3/(10)x^4-4/5x^3-3x^2+(36)/5x+11 f(x)=x^4-4x f(x)=(x^4)/4+2/3x^3-5/2x^2-6x+7 f(x)=x^4-4x^3+4x^2+15 f(x)=5x^(3/2)-3x^(5/2),x >0 f(x)==x^8+6x^2 f(x)==x^3-6x^2+9x+15 f(x)={x(x-2)}^2 f(x)=3x^4-4x^3-12 x^2+5 f(x)=3/2x^4-4x^3-45 x^2+51 f(x)=log(2+x)-(2x)/(2+x),xR

f'(x)>=g'(x), if f(x)=5-3x+(5)/(2)x^(2)-(x^(3))/(3),g(x)=3x-7

Let f(x)=ln x&g(x)=(x^(4)-x^(3)+3x^(2)-2x+2)/(2x^(2)-2x+3) The domain of f(g(x)) is-