Home
Class 12
MATHS
z^(2)b^(2)c^(2)...

z^(2)b^(2)c^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If a, b, c, x, y and z be real numbers and x^(2)+y^(2)+z^(2)=16 , a^(2)+b^(2)+c^(2)=9 and ax+by+cz=12 ; the value of ((a^(3)+b^(3)+c^(3))^((1)/(3)))/((x^(3)+y^(3)+z^(3))^((1)/(3))) is

If a, b, c, x, y and z be real numbers and x^(2)+y^(2)+z^(2)=16 ; a^(2)+b^(2)+c^(2)=9 ; ax+by+cz=12 ; the value of ((a^(3)+b^(3)+c^(3))^((1)/(3)))/((x^(3)+y^(3)+z^(3))^((1)/(3))) is

If a, b, c, x, y and z be real numbers and x^(2)+y^(2)+z^(2)=16 a^(2)+b^(2)+c^(2)=9 ax+by+cz=12 ; the value of [a^(3)+b^(3)+c^(3)]^(1/3) / [x^(3)+y^(3)+z^(3)]^(1/3) is

If (a^(2)+b^(2)+c^(2))(x^(2)+y^(2)+z^(2))=(ax+by+cz)^(2), then show that x:a=y:b=z:c

If a, b, c, x, y, z are real and a^(2)+b^(2) + c^(2)=25, x^(2)+y^(2)+z^(2)=36 and ax+by+cz=30 , then (a+b+c)/(x+y+z) is equal to :

If a, b, c, x, y, z are real and a^(2)+b^(2) + c^(2)=25, x^(2)+y^(2)+z^(2)=36 and ax+by+cz=30 , then (a+b+c)/(x+y+z) is equal to :

If a, b, c, x, y, z are real and a^(2)+b^(2) + c^(2)=25, x^(2)+y^(2)+z^(2)=36 and ax+by+cz=30 , then (a+b+c)/(x+y+z) is equal to :

If log x(log x)/(a^(2)+ab+b^(2))=(log y)/(b^(2)+bc+c^(2))=(log z)/(c^(2)+ca+a^(2)) then x^(a-b)*y^(b-c)*z^(c-a)=

if (x)/(a^(2)-b^(2))=(y)/(b^(2)-c^(2))=(z)/(c^(2)-a^(2)) , then prove that x+y+z=0.

The number of solution of the set of equations (x^(2))/a^(2)+(y^(2))/(b^(2))-(z^(2))/(c^(2))=0,(x^(2))/(a^(2))-(y^(2))/(b^(2))+(z^(2))/(c^(2))=0,-(x^(2))/(a^(2))+(y^(2))/(b^(2))+(z^(2))/(c^(2))=0 is