Home
Class 11
MATHS
" 5) "|([x^(2),y^(2),z^(2)],[(x+1)^(2),(...

" 5) "|([x^(2),y^(2),z^(2)],[(x+1)^(2),(y+1)^(2),(2+1)^(2)],[(x-1)^(2),(y-1)^(2),(2-1)^(2)]|=-4(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |{:(x^2,y^2,z^2),((x+1)^2,(y+1)^2,(z+1)^2),((x-1)^2,(y-1)^2,(z-1)^2):}|=-4(x-y)(y-z)(z-x)

|((x+1/x)^(2),(x-1/x)^(2),1),((y+1/y)^(2),(y-1/y)^(2),1),((z+1/z)^(2),(z-1/z)^(2),1)|

proof |[x,y,z],[x^(2),y^(2),z^(2)],[yz,zx,xy]| = |[1,1,1],[x^(2),y^(2),z^(2)],[x^(3),y^(3),z^(3)]|

det[[1,x,x^(2)1,y,y^(2)1,z,z^(2)]]det[[a^(2),1,2ab^(2),1,2b1,z,z^(2)]]det[[a^(2),1,2ab^(2),1,2bc^(2),1,2c]]=det[[(a-x)^(2),(b-x^(2)),(c-x)^(2)(a-y)^(2),(b-y)^(2),(c-y)^(2)(a-z)^(2),(b-z)^(2),(c-z)^(2)]]

|[yz,x,x^(2)],[zx,y,y^(2)],[xy,z,z^(2)]|=|[1,x^(2),x^(3)],[1,y^(2),y^(3)],[1,z^(2),z^(3)]|

tan^(-1)""(x-y)/(1+xy)+tan^(-1)""(y-z)/(1+yz)+tan^(-1)""(z-x)/(1+zx) =tan^(-1)""(x^(2)-y^(2))/(1+x^(2)y^(2))+tan^(-1)""(y^(2)-z^(2))/(1+y^(2)z^(2))+tan^(-1) ""(z^(2)-x^(2))/(1+z^(2)x^(2))

it x_(1)^(2) +2y_(1)^(2)+3z_(1)^(2)=x_(2)^(2)+2y_(2)^(2)+3z_(2)^(2)=x_(3)^(2)+2y_(3)^(2)+3z_(3)^(2)=2 " and " x_(2)x_(3) +2y_(2)y_(3)+3z_(2)z_(3)=x_(3)x_(1)+2y_(3)y_(1)+3z_(3)z_(1)=x_(1)x_(2)+2y_(1)y_(2)+3z_(1)z_(2)=1 Then find the value of |{:(x_(1),,y_(1),,z_(1)),(x_(2),,y_(2),,z_(2)),(x_(3),,y_(3),,z_(3)):}|

(1)/((x-y)^(2))+(1)/((y-z)^(2))+(1)/((z-x)^(2))=((1)/(x-y)+(1)/(y-z)+(1)/(z-x))^(2)

The value of Delta = |((a^(x) + a^(-x))^(2),(a^(x) -a^(-x))^(2),1),((a^(y) + a^(-y))^(2),(a^(y) -a^(-y))^(2),1),((a^(z) + a^(-z))^(2),(a^(z) - a^(-z))^(2),1)| , is