Home
Class 11
MATHS
The magnitudes of vectors vec a , vec b...

The magnitudes of vectors ` vec a , vec b` and ` vec c` are respectively `1,1` and `2.` If ` vec ax( vec ax vec c)+ vec b= vec0` , then the acute angle between ` vec a& vec c` is `pi/3` (b) `pi/6` (c) `pi/4` (d) None of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The magnitudes of vectors vec a , vec b and vec c are respectively 1,1 and 2. If vec a x ( vec a x vec c )+ vec b= vec0 , then the acute angle between vec a& vec c is (a) pi/3 (b) pi/6 (c) pi/4 (d) None of these

Vector vec a , vec b and vec c are such that vec a+ vec b+ vec c= vec0 and |a|=3,| vec b|=5 and | vec c|=7. Find the angle between vec a and vec b .

If vec a , vec b and vec c are non-coplanar unit vectors such that vec axx( vec bxx vec c)=( vec b+ vec c)/(sqrt(2)) , then the angle between vec a and vec b is a. 3pi//4 b. pi//4 c. pi//2 d. pi

If vec a , vec b and vec c are non-coplanar unit vectors such that vec axx( vec bxx vec c)=( vec b+ vec c)/(sqrt(2)) , then the angle between vec a and vec b is a. 3pi//4 b. pi//4 c. pi//2 d. pi

If vec a,vec b,vec c are three vectors such that vec a=vec b+vec c and the angle between vec b and vec c is (pi)/(2), then

If vec a,vec b,vec c are three vectors such that vec a=vec b+vec c and the angle between vec b and vec c is pi/2, then

If vec a,vec b,vec c are three vectors such that vec a=vec b+vec c and the angle between vec b and vec c is pi/2, then

If vec a,vec b and vec c are non-coplanar unit vectors such that vec a xx(vec b xxvec c)=(vec b+vec c)/(sqrt(2)), then the angle between vec a and vec b is a.3 pi/4b. pi/4 c.pi/2d. pi

If |vec(a)-vec(b)|= |vec(a)|=|vec(b)|=1 , then the angle between vec(a) and vec(b) is equal to a) (pi)/(3) b) (3pi)/(4) c) (pi)/(2) d)0