Home
Class 9
MATHS
(x-2)/(x-3)+(x-4)/(x-5)=10/3; x!=3,5...

`(x-2)/(x-3)+(x-4)/(x-5)=10/3; x!=3,5`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve by factorization: (x-2)/(x-3)+(x-4)/(x-5)=(10)/(3);quad x!=3,5

Solve: (x-2)/(x-3)+(x-4)/(x-5)=3(1)/(3),xne3,5.

(x-4)/(x-5)+(x-6)/(x-7)=(10)/(3)

Solve for : (5+x)/(5-x)-(5-x)/(5+x)=3 3/4; x!=5,-5

((x-1)/(x-2))-((x-2)/(x-3))=((x-3)/(x-4))-((x-4)/(x-5))

3(x+4)-2(x-2)=5(x+5)+3

Solve for :(5+x)/(5-x)-(5-x)/(5+x)=3(3)/(4);x!=5,-5

Observe the following pattern (1x2)+(2x3)=(2x3x4)/(3)(1x2)+(2x3)+(3x4)=(3x4x5)/(3)(1x2)+(2x3)+(3x4)+(4x5)=(4x5x6)/(3) and find the of (1x2)+(2x3)+(3x4)+(4x5)+(5x6)

If (x-4)^(3) + ( x-5)^(3) +(x-3)^(3)=3(x-4) (x-5)(x-3) . Then what is the value of x ?

Check whether the following are quadratic equations : (1) (x-3)^(2)=x(2x-5) (2) (2x-3)(8x+1) = (4x+5)(4x-5) (3) (5x+3)(x-2)=(4x+3)(2x-1) (4) (2x+5)^(3)=8(x-1)^(3) (5) x^(2)+7x-8=x(x+5) (6) x^(3)+9x^(2)-7x+2=(x+3)^(3)