Home
Class 9
MATHS
3/(x+1)-1/2=2/(3x-1), x!=-1,1/3...

`3/(x+1)-1/2=2/(3x-1), x!=-1,1/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

3 ((3x-1) / (2x + 3))-2 ((2x + 3) / (3x-1)) = 5, x! = (1) / (3),-(3) / (2) )

3 ((3x-1) / (2x + 3))-2 ((2x + 3) / (3x-1)) = 5, x! = (1) / (3),-(3) / (2) )

Let f: RvecRf(x)=x^3-3x^2+3x-2, then f^(-1)(x) is given by 1+(x+1)^(1/3) (2) 1+(x-1)^(1/3) x+1 3-1 (4) x-1 3-1

The constant term in the expansion of |(3x +1,2x-1,x+2),( 5x-1, 3x+2,x+1),(7x-1,3x+1,4x-1)| is

Prove that: i) sin^(-1)(3x-4x^(3))=3sin^(-1)x, |x| le 1/2 ii) cos^(-1)(4x^(2)-3x)=3cos^(-1)x,1/2 le x le 1 iii) tan^(-1)""(3x-x^(3))/(1-3x^(2))=3tan^(-1)x, |x| lt 1/sqrt(3) iv) tan^(-1)x+tan^(-1)""(2x)/(1-x^(2))=tan^(-1)""(3x-x^(3))/(1-3x^(2))

Without expanding, find the value of: (i) (x + 1)^4 - 4(x + 1)^3 (x - 1) + 6(x + 1)^2 (x - 1)^2 - 4(x + 1) (x - 1)^3 + (x -1)^4 (ii) (2x - 1)^4 + 4(2x - 1)^3 (3 - 2x) + 6(2x - 1)^2 (3 - 2x)^2 + 4(2x - 1) (3 - 2x)^3 + (3 - 2x)^4

If (3x-1)^3+(4x-3)^3+ (2x+1)^3= 3(3x - 1)(4x - 3)(2x +1) and x ne 1/3 then x=? यदि (3x-1)^3+(4x-3)^3+ (2x+1)^3= 3(3x - 1)(4x - 3)(2x +1) है तथा x ne 1/3 है, तो x=?

If (3(x^((1)/(3))-(1)/(x^((1)/(3)))))^((1)/(3))=2, then x^((1)/(3))+(1)/(x^((1)/(3)))=

" If (3x^(3)-8x^(2)+10)/((x-1)^(4))=(3)/(x-1)+(1)/((x-1)^(2))-(7)/((x-1)^(3))+(k)/((x-1)^(2)) then "k=