Home
Class 12
MATHS
If alpha+beta+gamma= a vecdelta and vecb...

If `alpha+beta+gamma= a vecdelta and vecbeta+vecgamma+vecdelta = b vecalpha and alpha, vecbeta, vecgamma` are non coplanar and `vecalpha` is not parallel to `vecdelta` then `vecalpha+vecbeta+vecgamma+vecdelta` equals (A) `avecalpha` (B) `bvecdelta` (C) 0 (D) `(a+b)vecgamma`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vecalpha+ vecbeta+ vecgamma=a vecdeltaa n d vecbeta+ vecgamma+ vecdelta=b vecalpha, vecalphaa n d vecdelta are non-colliner, then vecalpha+ vecbeta+ vecgamma+ vecdelta equals a. a vecalpha b. b vecdelta c. 0 d. (a+b) vecgamma

If vecalpha+ vecbeta+ vecgamma=a vecdeltaa n d vecbeta+ vecgamma+ vecdelta=b vecalpha, vecalphaa n d vecdelta are non-colliner, then vecalpha+ vecbeta+ vecgamma+ vecdelta equals a. a vecalpha b. b vecdelta c. 0 d. (a+b) vecgamma

If vecalpha+ vecbeta+ vecgamma=a vecdeltaa n d vecbeta+ vecgamma+ vecdelta=b vecalpha, vecalphaa n d vecdelta are non-colliner, then vecalpha+ vecbeta+ vecgamma+ vecdelta equals a. a vecalpha b. b vecdelta c. 0 d. (a+b) vecgamma

If vecalpha+ vecbeta+ vecgamma=a vecdeltaa n d vecbeta+ vecgamma+ vecdelta=b vecalpha, vecalphaa n d vecdelta are non-colliner, then vecalpha+ vecbeta+ vecgamma+ vecdelta equals a. a vecalpha b. b vecdelta c. 0 d. (a+b) vecgamma

If a(vecalpha xx vecbeta) + b(vecbeta xx vecgamma) +c(vecgamma xx vecalpha)=veco , where a, b, c are non-zero scalars, then the vectors vecalpha, vecbeta, vecgamma are

If vectors vecalpha,vecbeta, vecgamma are such that vecalpha+vecbeta+vec gamma=vec0 and |veca|=2, |vecbeta|=3 and |vecgamma|=4 , then the value of 2(vecalpha*vecbeta+vecbeta*vecgamma+vecgamma*vecalpha) is -

if vecalpha||( vecbetaxx vecgamma) , then ( vecalphaxxbeta)dot( vecalphaxx vecgamma) equals to | vecalpha|^2( vecbetadot vecgamma) b. | vecbeta|^2( vecgammadot vecalpha) c. | vecgamma|^2( vecalphadot vecbeta) d. | vecalpha|| vecbeta|| vecgamma|

if vecalpha||( vecbetaxx vecgamma) , then ( vecalphaxxbeta).(vecalphaxx vecgamma) equals to a. | vecalpha|^2( vecbeta.vecgamma) b. | vecbeta|^2( vecgamma. vecalpha) c. | vecgamma|^2( vecalpha. vecbeta) d. | vecalpha|| vecbeta|| vecgamma|

if vecalpha||( vecbetaxx vecgamma) , then ( vecalphaxxbeta).(vecalphaxx vecgamma) equals to a. | vecalpha|^2( vecbeta.vecgamma) b. | vecbeta|^2( vecgamma. vecalpha) c. | vecgamma|^2( vecalpha. vecbeta) d. | vecalpha|| vecbeta|| vecgamma|