Home
Class 12
MATHS
If (loga)/(y-z)=(logb)/(z-x)=(logc)/(x-...

If `(loga)/(y-z)=(logb)/(z-x)=(logc)/(x-y)` the value of `a^(y+z).b^(z+x).c^(x+y)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

loga/(y-z)=logb/(z-x)=logc/(x-y) then value of abc=

log a/(y-z)=log b/(z-x)=logc/(x-y), then a^xb^yc^z is equal to

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y) then prove that x^(y)+z^(z)+xx^(y+z)+y^(x+x)+z^(x+y)>=3

If (loga)/(y+z)=(log b)/(z+x)=(log c)/(x+y) show that (b/c )^(x)(c /a)^(y)(a/b)^z=1

If y=a^(1/(1-log_a x)), z=a^(1/(1-log_a y)), then the value of a^(1/(1-log_a z)) is (i) x/y (ii)y/x (iii)z/y (iv) x

If (a)/(y+z-x)=(b)/(z+x-y)=©/(x+y-z) then show that (x)/(b+c)=(y)/(c+a)=(z)/(a+b)