Home
Class 12
MATHS
[" (0) "],[" 1) "]...

[" (0) "],[" 1) "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(1, -1), (-1, 1)] and B=[(1, 1), (1, 1)] then AB=____.

If (1)/(a)+(1)/(b)+(1)/(c)=0 then |[1+a, 1, 1 ],[1, 1+b, 1],[1,1,1+c]| =

The roots of the equation |{:(" "1,t-1," "1),(t-1," "1," "1),(" "1," "1,t-1):}|=0 are

Point (1,1), (1,-1), (-1, 1), (-1,-1)

If (a, 1, 1), (1, b, 1) and (1, 1, c) are coplanar then prove that (1)/(1-a)+(1)/(1-b)+(1)/(1-c)=1 .

If A^(-1)=([2,1],[1,1]) ,then A is equal to: (A) ([2,-1],[-1,1]) (B) ([-2,1],[-1,-1]) (C) ([1,-1],[-1,2]) (D) ([-2,1],[1,1])

a^(−1) + b^(−1) + c^(−1) = 0 such that |[1+a,1,1,],[1,1+b,1,],[1,1,1+c,]| =△ then the value of △ is

a^(−1) + b^(−1) + c^(−1) = 0 such that |[1+a,1,1,],[1,1+b,1,],[1,1,1+c,]| =△ then the value of △ is

What is the value of the determinant |{:(1," "1," "1),(1,1+xyz," "1),(" "1," "1,1+xyz):}| ?

If A= [[1,1,1],[1,1,1],[1 ,1,1]] then A^(2)=