Home
Class 12
MATHS
a^(2)b^(2)x^(2)-(4b^(4)-3a^(4))x-12a^(2)...

a^(2)b^(2)x^(2)-(4b^(4)-3a^(4))x-12a^(2)b^(2)=0,a!=0" and "b!=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Using quadratic formula,solve the equation a^(2)b^(2)x^(2)-(4b^(4)-3a^(4))x-12a^(2)b^(2)=0

x^(2)-2ax-(4b^(2)-a^(2))=0

(a+b)^(2)x^(2)-4abx-(a-b)^(2)=0

Solve 4x^(2)-4ax+(a^(2)-b^(2))=0.

If p is the length of perpendicular from the origin on the line x/a+y/b=1 and a^(2),p^(2),b^(2) are in A.P., then (A) a^(4)+b^(4)=0 (B) a^(4)-b^(4)=0 (C) a^(2)+b^(2)=0 (D) a^(2)-b^(2)=0

Applying formula of quadratic equation, solve the following equations. a^2b^2x^2 - (4b^4 - 3a^4)x - 12a^2b^2=0 .

If a,b,c are distinct,then the value of x0quad x^(2)-aquad x^(3)-b satisfying det[[0,x^(2)-a,x^(3)-bx^(2)+a,0,x^(2)+cx^(4)+b,x-c,0]]=0 is c (b) a (c) b(d)0

The equation whose roots are diminished by 1 than those of 4x^(3)-x^(2)+2x-3=0 is (A) 4x^(3)-11x^(2)+12x+2=0 (B) 4x^(3)-11x^(2)+12x-3=0 (C) 4x^(3)+11x^(2)+12x+2=0 (D) 4x^(3)+11x^(2)+12x-3=0

If (1+x+x^(2))^(n)=b_(0)+b_(1)x+b_(2)x^(2)+….+b_(2n)x^(2n) then prove that If n=25, b_(0)-b_(2)+b_(4)-b_(6)+….-b_(2n)=0

If (1+x+x^(2))^(n)=b_(0)+b_(1)x+b_(2)x^(2)+….+b_(2n)x^(2n) then prove that b_(0)+b_(2)+b_(4)+b_(6)+…+b_(2n)=(3^(n)+1)/(2)