Home
Class 9
MATHS
(cos A-sin A+1)/(cos A+sin A-1)=cosec A+...

(cos A-sin A+1)/(cos A+sin A-1)=cosec A+cot A," using the identity "cosec^(2)A=1+cot^(2)A

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (cosA-sinA+1)/(cosA+sinA-1) =cosec A+ cot A using the identity cosec^(2)A=1+cot^(2)A .

Prove that (cosA-sinA+1)/(cosA+sinA-1) =cosec A+ cot A using the identity cosec^(2)A=1+cot^(2)A .

(cos A-sin A + 1) / (cos A + sin A-1) = csc A + cot A

( cos A - sin A + 1 ) / ( cos A + sin A - 1 ) = cosec A + cot A cosec A + cot A , = using the identity cosec ^ 2 A = 1 + cot^ 2 A .

Prove that: (cos A - sin A + 1)/(cos A + sin A -1) = "cosec"A + cot A

7. (sin A+cos A)(cot A+tan A)=sec A+cosec A

sin A(1+tan A)+cos A(1+cot A)=sec A+cosec A

Prove the following identities : (cosec A + sin A) (cosec A - sin A) = cot^(2) A + cos^(2) A

(1+tan A)/(sin A)+(1+cot A)/(cos A)=2(sec A+cosec A)

(cosec A - sin A)^2 + (sec A - cos A)^2 - (cot A - tan A)^2 is equal to