Home
Class 12
MATHS
यदि vec(a) तथा vec(b) दो सदिश है, तो सिद...

यदि `vec(a)` तथा `vec(b)` दो सदिश है, तो सिद्ध कीजिये कि
(i) `|vec(a)+vec(b)|le|vec(a)|+|vec(b)|` (ii) `|vec(a)-vec(b)|ge|vec(a)|-|vec(b)|`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |vec(a)-vec(b)|ge|vec(a)|-|vec(b)| .

Prove that |vec(a)|-|vec(b)|le |vec(a)-vec(b)| .

The inequality |vec(a).vec(b)|le |vec(a)||vec(b)| is called :

Find |vec(a)| and |vec(b)| , if (vec(a)+vec(b)).(vec(a)-vec(b))=8 and |vec(a)|=8|vec(b)| .

Find |vec(a)| and |vec(b)| , if (vec(a)+vec(b)).(vec(a)-vec(b))=8 and |vec(a)|=8|vec(b)| .

If |vec(a)|= |vec(b)| =1 and |vec(a) xx vec(b)|= vec(a).vec(b) , then |vec(a) + vec(b)|^(2)=

If (vec(a)-vec(b)).(vec(a)+vec(b))=27 and |vec(a)|=2|vec(b)| the find |vec(a)| and |vec(b)| .

vec(a) and vec(b) are any two vectors. Prove that |vec(a)+vec(b)|le|vec(a)|+|vec(b)|

[vec(a)vec(b)vec(c )]=[vec(b)vec(c )vec(a)]=[vec(c )vec(a)vec(b)] .