Home
Class 13
MATHS
[" Illustration "17" : "],[" Prove that ...

[" Illustration "17" : "],[" Prove that "f^(-4)e^((x+4)^(2))dx=3int_(1/3)^(2/3)e^(9(x-2/3)^(2))dx],[" Solution: "]

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int_(-4)^(-5)e^((x+5)^2)dx+3int_(1/3)^(2/3)e^(9(x-2/3)^2)dx

Evaluate int_(-4)^(-5)e^((x+5)^(2))dx+3int_(1//3)^(2//3)e^(9(x-2/3)^(2))dx .

Evaluate: int_(-4)^(-5)e^(x+5)^2dx+3int_(1/3)^(2/3)e^9(x-2/3)^2dx

Evaluate int_(-4)^(-5)e^((x+5)^2) dx+3int_(1//3)^(2//3)e^(9(x-(2)/(3))^(2)dx

Evaluate: int_(-4)^(-5)e^((x+5)^(2))dx+3int_((1)/(3))^((2)/(3))e^(9(x-(2)/(3))^(2))dx

int e^(x)((x^(2)-3)/((x+3)^(2)))dx

int(e^((x)/(2))-1)^(3)e^((x)/(2))dx

int(e^(x))/((1+x)^(3))dx-int(e^(x))/(2(1+x)^(2))dx=

show that the sum of the two integrals int_(-4)^(-5) e^((x+5)^2)dx+3int_(1/3)^(2/3) e^(9(x-2/3)^2)dx is zero