Home
Class 11
MATHS
[[1,0,0],[0,cos alpha,sin alpha],[0,sin ...

[[1,0,0],[0,cos alpha,sin alpha],[0,sin alpha,-cos alpha]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the inverse the matrix (if it exists)given in [[1,0,00,cos alpha,sin alpha0,sin alpha,-cos alpha]]

If F(alpha)=[[cos alpha,0,sin alpha],[0,1,0],[-sin alpha,0,cos alpha]] , show that [F(alpha]^(-1)=F(-alpha) .

Find the inverse of [1000cos alpha sin alpha0sin alpha-cos alpha]

If F(alpha)=[[cos alpha,-sin alpha, 0],[sin alpha, cos alpha, 0],[0,0,1]] , then show that F(alpha) F (beta)= F(alpha + beta) .

Let F(alpha)=[[cos alpha,-sin alpha,0sin alpha,cos alpha,00,0,1]], where alpha in R Then (F(alpha))^(-1) is equal to F(alpha^(-1)) b.F(-alpha) c.F(2 alpha)d.-[[1,11,0]]

If A=,[[0,-tan((alpha)/(2))]tan((alpha)/(2)),0]], then I+A=(I-A)[[cos alpha,-sin alphasin alpha,cos alpha]]

Find inverse of the matrix A=[[cos alpha, -sin alpha, 0 ],[ sin alpha, cos alpha, 0],[ 0, 0, 1]]

If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),(0,0,e^(beta))] , then A(alpha, beta)^(-1) is equal to

If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),(0,0,e^(beta))] , then A(alpha, beta)^(-1) is equal to

If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),(0,0,e^(beta))] , then A(alpha, beta)^(-1) is equal to