Home
Class 9
MATHS
" 11."(a-b)^(3)+(b-c)^(3)+(c-a)^(3)...

" 11."(a-b)^(3)+(b-c)^(3)+(c-a)^(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of the expression ? ((a-b)^(3)+(b-c)^(3)+(c-a)^(3))/(3(a-b)(b-c)(c-a))=?

If a+b+c=27 then (a-7)^(3)+(b-9)^(3)+(c-11)^(3)-3(a-7)(b-9)(c-11)=

Factorise : (a+b)^(3)+(b+c)^(3)+(c+a)^(3)-3(a+b)(b+c)(c+a)

The expression (a-b)^3+\ (b-c)^3+\ (c-a)^3 can be factorized as (a) (a-b)(b-c)(c-a) (b) 3(a-b)(b-c)(c-a) (c) -3\ (a-b)(b-c)(c-a) (d) (a+b+c)(a^2+b^2+c^2-a b-b c-c a)

The value of [{(a^2-b^2)^3+(b^2-c^2)^3+(c^2-a^2)^3}/{(a-b)^3+(b-c)^3+(c-a)^3}] = (1) 3(a+b)(b+c)(c+a) (2) 3(a-b)(b-c)(c-a) (3) (a+b)(b+c)(c+a) (4) 1

Show that (a-b)^3+(b-c)^3+(c-a)^3=3(a-b)(b-c)(c-a)

Prove that (a-b)^3+(b-c)^3+(c-a)^3=3(a-b)(b-c)(c-a)

Prove that (a-b)^3+(b-c)^3+(c-a)^3=3(a-b)(b-c)(c-a)