Home
Class 12
MATHS
Find lim(n->oo)((1.3.5...(2n-1)}(n+1)^4...

Find `lim_(n->oo)((1.3.5...(2n-1)}(n+1)^4]+[n^4(1.3.5...(2n-1)(2n+1)]]`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

lim_(n->oo) (1)/(n^(6)){(n+1)^(5)+(n+2)^(5)+...+(2n)^(5)}

lim_(n rarr oo)((1)/(1.3)+(1)/(3.5)+.............+(1)/((2n-1)(2n+) 1)))

lim_(nto oo)(1+2+3+...+n)/(1+3+5+....(2n-1))=

lim_(n rarr oo){(1)/(1.3)+(1)/(3.5)+(1)/(5.7)+....+(1)/((2n+1)(2n+3 ))

lim_(n rarr oo) (1.2 +2.3+3.4+ .....+n(n+1))/n^(3)=

Evaluate: lim_(n->oo)(4^n+5^n)^(1/n)

Find lim_ (n rarr oo) (n ^ (3) + a) (n + 1) ^ (3) a] ^ (- 1) (2 ^ (n + 1) + a) (2 ^ (n) + a) ^ (- 1)

lim_(n to oo)(3.2^(n+1)-4.5^(n+1))/(5.2^(n)+7.5^(n))=

underset(n to oo)lim {(1)/(1.3)+(1)/(3.5)+(1)/(5.7)+.....+(1)/((2n-1)(2n+1))}=