Home
Class 11
MATHS
arg(z+1)=(pi)/(6),arg(z-1)=(2 pi)/(3)" t...

arg(z+1)=(pi)/(6),arg(z-1)=(2 pi)/(3)" then "

Promotional Banner

Similar Questions

Explore conceptually related problems

if arg(z+a)=(pi)/(6) and arg(z-a)=(2 pi)/(3) then

Find the complex number z if arg (z+1)=(pi)/(6) and arg(z-1)=(2 pi)/(3)

if arg(z+a)=pi/6 and arg(z-a)=(2pi)/3 then

if arg(z+a)=pi/6 and arg(z-a)=(2pi)/3 then

Number of z, which satisfy Arg(z-3-2i)=(pi)/(6) and Arg(z-3-4i)=(2 pi)/(3) is/are :

If arg(z+a)=pi/6 " and " arg(z-a)=(2pi)/(3)(a in R^(+)) , then

If z=(cos pi)/(4)+i(sin pi)/(6), then |z|=1,arg(z)=(pi)/(4) b.|z|=1,arg(z)=(pi)/(6) c.|z|=(sqrt(3))/(2),arg(z)=(25 pi)/(24)d|z|=(sqrt(3))/(2),arg(z)=(tan^(-1)1)/(sqrt(2))

Plot the region represented by (pi)/(3)<=arg((z+1)/(z-1))<=(2 pi)/(3) in the Argand plane.

If arg(z - 1) = pi/6 and arg(z + 1) = 2 pi/3 , then prove that |z| = 1 .

Number of points of intersections of the curves Arg((z-1)/(z-3))=(pi)/(4) and Arg(z-2)=(3 pi)/(4) are