Home
Class 12
MATHS
Prove that: |(sinalpha, cosalpha, 1),(si...

Prove that: `|(sinalpha, cosalpha, 1),(sinbeta, cosbeta, 1),(singamma, cosgamma, 1)|=sin(alpha-beta)+sin(beta-gamma)+sin(gamma-alpha)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that sinalpha+sinbeta+singamma-sin(alpha+beta+gamma)=4sin ((alpha+beta)/2) sin((beta+gamma)/2)sin((gamma+alpha)/2)

If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma then sin(2alpha-beta-gamma)+sin(2beta-gamma-alpha)+sin(2gamma-alpha-beta)=

|(sin alpha, cosalpha,sin(alpha+delta)),(sinbeta, cos beta,sin(beta+delta)),(singamma,cosgamma,sin(gamma+delta))|=

Prove that: sinalpha+sinbeta+singamma-sin(alpha+beta+gamma)=4sin((alpha+beta)/2)sin((beta+gamma)/2)sin((gamma+alpha)/2)dot

Using properties of determinants. Prove that |(sinalpha,cosalpha,cos(alpha+delta)),(sinbeta,cosbeta,cos(beta+delta)),(singamma,cosgamma,cos(gamma+delta))|=0

If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma , then which of the following is/are true:- (a) cos(alpha-beta)+cos(beta-gamma)+cos(gamma-delta)=-3/2 (b) cos(alpha-beta)+cos(beta-gamma)+cos(gamma-delta)=-1/2 (c) sumcos2alpha+2cos(alpha+beta)+2cos(beta+gamma)+2cos(gamma+alpha)=0 (d) sumsin2alpha+2sin(alpha+beta)+2sin(beta+gamma)+2sin(gamma+alpha)=0

If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which of the following is/are true:- (a)cos(alpha-beta)+cos(beta-gamma)+cos(gamma-delta)=-3/2 (b)cos(alpha-beta)+cos(beta-gamma)+cos(gamma-delta)=-1/2 (c)sumcos2alpha+2cos(alpha+beta)+2cos(beta+gamma)+2cos(gamma+alpha)=0 (d)sumsin2alpha+2sin(alpha+beta)+2sin(beta+gamma)+2sin(gamma+alpha)=0

If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma , then which of the following is/are true:- (a) cos(alpha-beta)+cos(beta-gamma)+cos(gamma-delta)=-3/2 (b) cos(alpha-beta)+cos(beta-gamma)+cos(gamma-delta)=-1/2 (c) sumcos2alpha+2cos(alpha+beta)+2cos(beta+gamma)+2cos(gamma+alpha)=0 (d) sumsin2alpha+2sin(alpha+beta)+2sin(beta+gamma)+2sin(gamma+alpha)=0

[{:(sinalpha,cosalpha,sin(alpha+delta)),(sinbeta,cosbeta,sin(beta+delta)),(singamma,cosgamma,sin(gamma+delta)):}]=