Home
Class 12
MATHS
Prove that sin(3sin^-1(1/3)) = 23/27...

Prove that `sin(3sin^-1(1/3)) = 23/27`

Text Solution

Verified by Experts

LHS
`sin(3sin^(-1)(1/3))`
`Let sin^(-1)(1/2)=x`
`sin(3x)=3sinx-4sinn^3x`
`=3*1/3-4(1/3)^3`
`=1-4/27`
`=23/27`
RHS.
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : sin^-1(3/5) + sin^-1(8/17) = sin^-1(77/85)

Prove that : sin^-1(8/17) + sin^-1(3/5) = sin^-1(77/85)

Prove that sin^(-1)""1/3+sin^(-1)""1/(3sqrt11)+sin^(-1)""(3)/(sqrt11)=pi/2

Prove that : sin^-1 x + sin^-1 2x = pi/3

Prove that : sin^(-1)(8/17)+sin^(-1)(3/5)=sin^(-1)(77/85) .

Prove that sin^(-1) . 8/17 +sin^(-1) . 3/5 = sin^(-1) . 77/85

Prove that 3 sin ^(-1) x = sin^(-1) (3x - 4x^3), x in [-1/2,1/2]

Prove that : sin^(-1)""8/17+sin^(-1)""3/5=sin^(-1)""77/85=tan^(-1)""77/36 .

Prove that : cos^(-1).(4)/(5)+ tan ^(-1).(3)/(5) = tan^(-1) .(27)/(11) (ii) Prove that : sin^(-1).(3)/(5)+ tan ^(-1).(3)/(5) = tan^(-1) .(27)/(11)

Prove that: sin ((8pi)/3) cos ((23pi)/6)+cos ((13pi)/3) sin ((35pi)/6)=1/2