Home
Class 11
MATHS
y=x+tan x," prove that "cos^(2)x(dy)/(dx...

y=x+tan x," prove that "cos^(2)x(dy)/(dx^(2))-2x+2x=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the second order derivative of the following functions If y = e^(tan x) , prove that cos^2 x(d^2 y)/(dx^2) - (1 +sin 2x) (dy)/(dx) = 0

If y=x+tan x , show that cos^(2) x. (dy)/(dx)=2-sin^(2)x .

If y=tan^(-1)x, prove that (1+x^(2))(d^(2)y)/(dx^(2))+2x(dy)/(dx)=0

If y=tan^(-1)x, prove that (1+x^(2))(d^(2)y)/(dx^(2))(2x)(dy)/(dx)=0

If y=e^tanx then prove that: cos^2x(d^2y)/(dx^2)-(1+sin2x)(dy)/dx=0

If y=e^tanx then prove that: cos^2x(d^2y)/(dx^2)-(1+sin2x)(dy)/dx=0

If y= e^(tan x) then show that, (cos^(2)x) (d^(2)y)/(dx^(2))- (1+ sin 2x) (dy)/(dx)=0

If y=e^(x)(sin x+cos x) prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0

If y=e^(x)(sin x+cos x), prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)=2y=0

If y=e^(x)(sin x+cos x) prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0