Home
Class 12
MATHS
The smallest of values of x^2-3x+3 in th...

The smallest of values of `x^2-3x+3` in the interval `[-3,3/2]` is a. -20 b. -15 c. 5 d. 3/4

Promotional Banner

Similar Questions

Explore conceptually related problems

The smallest value of x^(2)-3x+3 in the interval [-3,(3)/(2)] is

The smallest value of M such that 1x^(2)-3x+2|leM for all x in [1,5/2] is

The value of c in Rolles theorem for the function f(x)=x^3-3x in the interval [0,\ sqrt(3)] is (a) 1 (b) -1 (c) 3//2 (d) 1//3

Verify Mean Value Theorem if f(x)= x^(3) - 5x^(2) - 3x in the interval [1,3] .

The greatest value of the function f(x)=2. 3^(3x)-3^(2x). 4+2. 3^x in the interval [-1,1] is

The greatest value of the function f(x)=2.3^(3x)-3^(2x).4+2.3^(x) in the interval [-1,1] is

Verify Mean Value Theorem, if f(x) = x^3-5x^2-3x , in the interval [a, b], where a = 1 and b = 3. Find all c in (1,3) for which f'(c) = 0 .