Home
Class 12
MATHS
To find sum of tangents of a series of a...

To find sum of tangents of a series of angles, the angles being in Arithmetical Progression To prove : Explian `f` his `tanalpha + 2tan2alpha + 2^2 tan(2^2 alpha) + 2^3 tan(2^3alpha) + ........ 2^(n - 1)tan(2^(n - 1)alpha) + 2^n cot(2^nalpha) = cotalpha`, given all the functions are defined.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: tan alpha +2tan 2alpha+ 2^(2)tan 2^(2)alpha +..... + 2^(n-1) tan 2^(n-1)alpha + 2^n cot 2^n alpha=cotalpha .

The value of tan alpha+2tan(2 alpha)+4tan(4 alpha)+...+2^(n-1)tan(2^(n-1)alpha)+2^(n)cot(2^(n)alpha) is

Prove that tan alpha+2 tan 2 alpha+2^(2)tan^(2)alpha+..............+2^(n-1)tan2^(n-1)alpha+2^(@)cot2^(@)alpha=cotalpha

Prove that tan alpha+2 tan 2 alpha+2^(2)tan^(2)alpha+..............+2^(n-1)tan2^(n-1)alpha+2^(@)cot2^(@)alpha=cotalpha

The value of tan alpha +2tan(2alpha)+4tan(4alpha)+...+2^(n-1)tan(2^(n-1)alpha)+2^ncot(2^nalpha) is

The value of tanalpha+2tan(2alpha)+4tan(4alpha)+...+2^(n-1)tan(2^(n-1)alpha)+2^(n)cot(2^(n)alpha) is

Prove that cot alpha - tan alpha =2 cot 2 alpha.

Prove: (2)/( cot alpha tan 2 alpha ) = 1 - tan ^(2) alpha.

If 4nalpha = pi then the numerical value tan alpha* tan 2alpha *tan 3alpha ...... tan(2n -1)alpha = _____