Home
Class 10
MATHS
y=cos^(-1)((1-x^(2))/(1+x^(2)))...

y=cos^(-1)((1-x^(2))/(1+x^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

If let y=cos^(-1)((1-e^(2x))/(1+e^(2x)))" then "(dy)/(dx)=

tan[1/2sin^(-1)((2x)/(1+x^(2)))-1/2cos^(-1)((1-y^(2))/(1+y^(2)))]=

tan{(1/2)sin^(-1)((2x)/(1+x^(2)))+1/2cos^(-1)((1-y^(2))/(1+y^(2)))} .

If y = cos^(-1) ((x^(2) -1)/(x^(2) +1)) " then " (dy)/(dx) = ?

tan[1/2Sin^(-1)((2x)/(1+x^(2)))-1/2Cos^(-1)((1-y^(2))/(1+y^(2)))]=

Find the derivate of : y = cos^-1 (frac(1-x^2)(1+x^2))

Find the derivate of : y = x cos^-1 (frac(1-x^2)(1+x^2))

Find dy/dx of y=cos^-1frac(1-x^2)((1+x^2)) , 0 < x < 1

Find dy/dx y = cos^(-1)(1-1/x-1/x^(2))^(1/2)

If y=(sin^(-1)x cos^(-1)((x^2)/2))/(1+x^2) then find the value of y(1/2) + y(1/sqrt2) + y(-1/2) + y(-1/sqrt2)