Home
Class 11
MATHS
If the lim(x->0) 1/(x^3) (1/sqrt(1+x)...

If the `lim_(x->0) 1/(x^3) (1/sqrt(1+x) -(1+ax)/(1+bx))` exists and has the value equal to ` l`, then find the value of ` 1/a-2/l+3/b`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the lim_(x rarr0)(1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exists and has the value to 1,then find the value of (1)/(a)-(2)/(l)+(3)/(b)

If L=lim_(xto0) (1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exists,then

If L=lim_(xto0) (1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exists,then

If L=lim_(xto0) (1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exists,then find the value of 1/a - 2/l - 3/b

Consider the limit lim _(x to 0) (1)/(x ^(3))((1)/(sqrt(1+x))- ((1+ ax))/((1+bx))) exists, finite and has the value equal to l (where a,b are real constants), then: a+b=

Consider the limit lim _(x to 0) (1)/(x ^(3))((1)/(sqrt(1+x))- ((1+ ax))/((1+bx))) exists, finite and has the value equal to l (where a,b are real constants), then : |(b)/(a)|=

Consider the limit lim _(x to 0) (1)/(x ^(3))((1)/(sqrt(1+x))- ((1+ ax))/((1+bx))) exists, finite and has the value equal to l (where a,b are real constants), then : a=

lim_(x->0;)(root(3)(1+3x) \ -1-x)/((1+x)^(101)-1-101 x) has the value equal to

If lim_(x rarr0)(1-cos(1-cos(1-cos x)))/(x^(a)) exists and has a non-zero value,find the value of a.

if lim_(x rarr0)(1+a cos2x+b cos4x)/(x^(4)) exists for all x in R and has the value equal to c. Find the value of 3(a+b+c)