Home
Class 11
MATHS
[" (i) "p(x)=2x^(3)+x^(2)-2x-1,g(x)=x+1]...

[" (i) "p(x)=2x^(3)+x^(2)-2x-1,g(x)=x+1],[" (i) "[g(x)=x^(3)+3x^(2)+3x+1,g(x)=x+2],[" is "x,y=-1,-1,x^(2)+x+6,g(x)=x-3]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Use the factor theorem, to determine whether g(x) is a factor of p(x) in each of the following cases : (i) p(x)=2x^(3)+x^(2)-2x-1,g(x)=x+1 (ii) p(x)=x^(3)+3x^(2)+3x+1,g(x)=x+2 (iii) p(x)=x^(3)-4x^(2)+x+6,g(x)=x-3

f(x)=x^(3)-6x^(2)+2x-4,g(x)=1-2x

Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases: (i) p(x)=2x^3+x^2-2x-1,g(x)=x+1 (ii) p(x)=x^3+3x^2+3x+1,g(x)=x+2 (iii) p(x)=x^3+4x^2+x+6,g(x)=x-3

Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases: (i) p(x)=2x^3+x^2-2x-1,g(x)=x+1 (ii) p(x)=x^3+3x^2+3x+1,g(x)=x+2 (iii) p(x)=x^3+4x^2+x+6,g(x)=x-3

Use the Factor Theorem to determine whether g (x) is factor of f(x) in each of the following cases: (i) f (x) = 5x ^(3) + x ^(2)-5x -1, g (x)=x +1 (ii) f (x) = x ^(3) + 3x ^(2) + 3x +1 , g(x) =x +1 (iii) f (x) =x ^(3) - 4x ^(2) +x + 6, g (x) =x -2 (iv) f (x) = 3x ^(3) + x^(2) - 20x + 12, g (x) = 3x -2 (v) f (x) = 4x ^(3) + 20 x ^(2) + 33 x +18, g (x) =2x +3

Use the Factor Theorem to determine whether g (x) is a factor of p (x) in each of the following cases: (i) p(x) = 2x^3+x^2-2x-1,g(x) =x+1 (ii) p(x)=x^3+3x+1, g (x) =x+2 (iii) p(x) = x^3-4x^2+x+6,g(x)=x-3

By remainder theorem , find the remainder when p(x) is divided by g(x) where , (i) p(x) =x^(3) -2x^2 -4x -1 ,g(x) =x+1 (ii) p(x) =4x^(3) -12x^(2) +14x -3,g(x) =2x-1 (iii) p(x) =x^(3) -3x^(2) +4x +50 ,g(x) =x-3

Divide p(x)=x^3+3x^2+3x+1 by g(x)=x+2

divide p(x)=x^3+3x^2+3x+1 by g(x)= x+2

Divide p(x) by q(x) p(x)=2x^(2)+3x+1,g(x)=x+2