Home
Class 12
MATHS
बिन्दु (2,3,4) की समतल 3x+2y+2z+5=0 से द...

बिन्दु (2,3,4) की समतल `3x+2y+2z+5=0` से दुरी ज्ञात कीजिए जो की रेखा `(x+3)/(3)=(y-2)/(6)=(z)/(2)` एक समान्तर नापी गयी है ।

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the distance of the point (2,3,4) from the plane 3x+2y+2z+5=0 measured parallel to the line (x+3)/3=(y-2)/6=z/2 .

If x+y+z=0 , then [(y-z-x)//2]^(3)+[(z-x-y)//2]^(3)+[(x-y-z)//2]^(3) equals

3x - [4y - {7x - (3z - 2y) + 4z - 3(x + 3y - 2z)}]

2x + 3y + 3z = 5, x-2y + z = -4,3x-y-2z = 3

Add: 5x - 8y + 2z, 3z - 4y - 2x, 6y - z - x and 3x - 2z - 3y

The image of the line (x-1)/3=(y-3)/1=(z-4)/(-5) in the plane 2x-y+z+3=0 is the line (1) (x+3)/3=(y-5)/1=(z-2)/(-5) (2) (x+3)/(-3)=(y-5)/(-1)=(z+2)/5 (3) (x-3)/3=(y+5)/1=(z-2)/(-5) (3) (x-3)/(-3)=(y+5)/(-1)=(z-2)/5

The image of the line (x-1)/(3)=(y-3)/(1)=(z-4)/(-5) in the plane 2x-y+z+3=0 is the line (1)(x+3)/(3)=(y-5)/(1)=(z-2)/(-5) (2) (x+3)/(-3)=(y-5)/(-1)=(z+2)/(5) (3) (x-3)/(3)=(y+5)/(1)=(z-2)/(-5) (3) (x-3)/(-3)=(y+5)/(-1)=(z-2)/(5)

Find x , y , z , t if 2[(x, z ),(y ,t)]+3[(1,-1),( 0, 2)]=3[(3, 5),( 4 ,6)] .