Home
Class 12
MATHS
[g(x)=int(1+2cos x)/(cos x+2)],[g(0)=0,q...

[g(x)=int(1+2cos x)/(cos x+2)],[g(0)=0,quad sin((pi)/(2))=]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let g(x)=int(1+2cos x)/((cos x+2)^(2))dx and g(0)=0. then the value of 8g((pi)/(2)) is

int_(0)^( pi/2)(sin x)/(1+cos x)dx

If f (x) =2x, g (x) =3 sin x -x cos x, then for x in (0, (pi)/(2)):

int_ (0) ^ ((pi) / (2)) (sin x) / (sin x + cos x) dx = int_ (0) ^ ((pi) / (2)) (cos x) / (sin x + cos x) dx = int_ (0) ^ ((pi) / (2)) (dx) / (1 + cot x) = int_ (0) ^ ((pi) / (2)) (dx) / ( 1 + time x) = (pi) / (4)

If g(x)=int_(0)^(x)(|sin t|+|cos t|)dt, then g(x+(pi n)/(2)) is equal to,where n in N,g(x)+g(pi)(b)g(x)+g((n pi)/(n2))g(x)+g((pi)/(2)) (d) none of these

If A = int_(0)^((pi)/(2))(sin^(3)x)/(1+cos^(2)s)dx and B=int_(0)^((pi)/(2))(cos^(2)x)/(1+sin^(2)x)dx , then (2A)/(B) is equal to

If A = int_(0)^((pi)/(2))(sin^(3)x)/(1+cos^(2)s)dx and B=int_(0)^((pi)/(2))(cos^(2)x)/(1+sin^(2)x)dx , then (2A)/(B) is equal to

If A=int_(0)^( pi)(cos x)/((x+2)^(2))dx, then int_(0)^( pi/2)(sin2x)/(x+1)dx is equal to

int_(0)^( pi)sin^(3)x(1+2cos x)(1+cos x)^(2)dx