Home
Class 12
MATHS
" If "R=(sqrt(2)+1)^(2n-1)" and "f=R-[R]...

" If "R=(sqrt(2)+1)^(2n-1)" and "f=R-[R]" ,then "[R]" equal is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If R = (sqrt(2) + 1)^(2n+1) and f = R - [R] , where [ ] denote the greatest integer function, then [R] equal

If R = (sqrt(2) + 1)^(2n+1) and f = R - [R] , where [ ] denote the greatest integer function, then [R] equal (a) f+1/f (b) f-1/f (c) 1/f-f (d) None of these

If R=(5 +sqrt21)^(2n+1) and f=R-[R] , where [R] denotes the greatest integer less than or equal then R(1-f)=

Let R=(5 sqrt5+11)^(2n+1) , f=R-[R] . Then Rf=

Let R=(5sqrt(5)+11)^(2n+1) and f=R-[R], where [ ] denotes the greater integer function, then Rf is equal to :

Let R = (sqrt2+1)^(2n+1),ninN and f= R- [R], where [] denote the greatest integer function, Rf is equal to

Let R=(2+sqrt(3))^(2n) and f=R-[R] where [ denotes the greatest integer function,then R(1-f) is equal to

Let R=(2+sqrt3)^(2n) and f=R-[R] where [ ] denotes the greatest integer function , then R(1-f)=

If I(r)=r(r^(2)-1), then sum_(r=2)^(n)(1)/(I(r)) is equal to