Home
Class 12
MATHS
[" (5) "|[a,a+b,a+a+2b],[a+2b,ad,a+b],[a...

[" (5) "|[a,a+b,a+a+2b],[a+2b,ad,a+b],[a+b,a+2b,a]|=9b^(2)(a+b)]

Promotional Banner

Similar Questions

Explore conceptually related problems

a a+b a+2b 10. Using properties of determinants, show that |[a,a+b,a+2b],[a+2b,a,a+b],[a+b,a+2b,a]|=9b^2(a+b)

Using properties of determinant show that : |(a,a+b,a+2b),(a+2b,a,a+b),(a+b,a+2b,a)|=9b^2(a+b)

Using properties of determinats show that |{:(a,a+b,a+2b),(a+2b,a,a+b),(a+b,a+2b,a):}|=9b^2(a+b)

The value of Delta = |(a,a +b,a +2b),(a +2b,a,a +b),(a +b,a +2b,a)| is equal to

Prove: |(a, a+b, a+2b),( a+2b, a ,a+b ),(a+b, a+2b, a)|=9(a+b)b^2

Prove: |(a, a+b, a+2b),( a+2b, a ,a+b ),(a+b, a+2b, a)|=9(a+b)b^2

Without expanding the determinants,show that |(a,a+b,a+2b),(a+2b,a,a+b),(a+b,a+2b,a)|=9(a+b)b^2

Without expanding, prove the following |(a,a+b,a+2b),(a+2b,a,a+b),(a+b,a+2b,a)|=9(a+b)b^2

Prove that: |[b, c-a^2,c] ,[a-b^2,a b-c^2,c ],[a-b^2,a ,b-c^2b c-a^2a b-c^2b c-a^2c a-b^2]|=|[a, b, c],[ b ,c ,a],[ c, a ,b]|^2 .

The determinant Delta=|(a,a+b,a+2b),(a+2b,a,a+b),(a+b,a+2b,a)|=