Home
Class 8
MATHS
(" Factomic i- ")/(x(x+y)^(3)-3x^(2)y(x+...

(" Factomic i- ")/(x(x+y)^(3)-3x^(2)y(x+y))

Promotional Banner

Similar Questions

Explore conceptually related problems

Factor (i) x (x + y) ^ (3) -3x ^ (2) y (x + y)

for x=3 and y=-2 verify that (x-y)^(3)=x^(3)-y^(3)-3xy(x-y)

Verify : (i) x^(3)+y^(3)=(x+y)(x^(2)-xy+y^(2)) (ii) x^(3)-y^(3)=(x-y)(x^(2)+xy+y^(2))

Verify : (i) x^(3)+y^(3)=(x+y)(x^(2)-xy+y^(2)) " " (ii) x^(3)-y^(3)=(x-y)(x^(2)+xy+y^(2))

If (x^(2) + y^(2))/(x^(2) - y^(2)) = 2(1)/(8) , find : (i) (x)/(y) (ii) (x^(3) + y^(3))/(x^(3) - y^(3))

If 7x - 15y = 4x + y , find the value of x: y . Hence, use componendo and dividendo to find the values of : (i) (9x + 5y)/(9x - 5y) (iI) (3x^(2) + 2y^(2))/(3x^(2) - 2y^(2))

Simplify : ( 3y ( x - y) - 2x ( y -2x))/( 7x ( x - y) - 3 ( x ^(2) - y ^(2)))

((x +y)^(3) + (x-y)^(3))/(2) -y (3x^(2) + y^(2)) = ______

Simplify the following : (x-y)(2y-x)+(x+y)(x-y)-(y-3x)(2x-3y)

On simplification, (x^3-y^3)/(x[(x+y)^2-3xy]) div (y[(x-y)^2+3xy])/(x^3+y^3)xx ((x+y)^2-(x-y)^2)/(x^2-y^2) is equal to : सरलीकरण के बाद, (x^3-y^3)/(x[(x+y)^2-3xy]) div (y[(x-y)^2+3xy])/(x^3+y^3)xx ((x+y)^2-(x-y)^2)/(x^2-y^2) किसके बराबर होगा?