Home
Class 12
MATHS
(d)/(dx)(tan^(-1)(sqrt(1+x^(2))-1)/(x))"...

(d)/(dx)(tan^(-1)(sqrt(1+x^(2))-1)/(x))" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

d/(dx) [tan^(-1)(sqrt(x))] =

d/(dx) [tan^(-1)(sqrt(x))] =

(d)/(dx)tan^(-1)((x)/(1-sqrt(1+x^(2))))]=

(d)/(dx)(tan^(-1)((2)/(x^(-1)-x))) is equal to

(d)/(dx)(tan^(-1)((x)/(sqrt(a^(2)-x^(2))))

d/(dx)(tan^(- 1)(2/(x^(- 1)-x))) is equal to

(d)/(dx)(tan^(-1)((sqrt(x)-x)/(1+x^((3)/(2))))) equals- (x<=0)

d/dx(tan^-1(x/sqrt(a^2-x^2))=

int _( 0) ^(sqrt3) ((1)/(2) (d)/(dx)(tan ^(-1) ""(2x)/(1- x^(2))))dx equals to:

int _( 0) ^(sqrt3) ((1)/(2) (d)/(dx)(tan ^(-1) ""(2x)/(1- x^(2))))dx equals to: