Home
Class 12
MATHS
" If "f'(3)=2" then "lim(x rarr oo)(f(3+...

" If "f'(3)=2" then "lim_(x rarr oo)(f(3+h^(2))-f(3-h^(2)))/(2h^(2))" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If f'(3)=2, then lim_(h rarr0)(f(3+h^(2))-f(3-h^(2)))/(2h^(2)) is

If f(x) is derivable at x=3 and f'(3)=2 , then value of lim_(hto0)(f(3+h^(2))-f(3-h^(2)))/(2h^(2)) is less than

If f'(3)=2 , then lim_(h->0)(f(3+h^2)-f(3-h^2))/(2h^2) is

If f'(a)=(1)/(4), then lim_(h rarr0)(f(a+2h^(2))-f(a-2h^(2)))/(f(a+h^(3)-h^(2))-f(a-h^(3)+h^(2)))=0 b.1 c.-2 d.none of these

If f '(2) =1, then lim _( h to 0 ) (f (2+ h ^(2)) -f ( 2- h ^(2)))/( 2h ^(2)) is equal to

If f(a)=(1)/(4) , then lim_(hrarr0) (f(a+2h^(2))-f(a-2h^(2)))/(f(a+h^(3)-h^(2))-f(a-h^(3)+h^(2))) =

lim_(x rarr oo), where (2x-3)/(3)

If f(x) is differentiable EE f'(1)=4,f'(2)=6 then lim_(h rarr0)(f(3h+2+h^(3))-f(2))/(f(2h-2h^(2)+1)-f(1))=