Home
Class 12
MATHS
Prove that lim(x->4)((cosalpha)^x-(sina...

Prove that `lim_(x->4)((cosalpha)^x-(sinalpha)^x-cos2alpha)/(x-4)=cos^4alphaln(cosalpha)-sin^4 alpha,alpha in (0,pi/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that lim_(x rarr4)((cos alpha)^(x)-(sin alpha)^(x)-cos2 alpha)/(x-4)=cos^(4)alpha ln(cos alpha)-sin^(4)alpha,alpha in(0,(pi)/(2))

Show that : lim_(xto4)((cosalpha)^(x)-(sinalpha)^(x)-cos2alpha)/(x-4)=cos^(4)alphalog_(e)(cosalpha)-sin^(4)alphalog_(e)(sinalpha)

The value of lim_(xto4)((cos alpha)^(x)-(sinalpha)^(x)-cos 2alpha)/(x-4), alpha epsilon(0,(pi)/2) is

The value of lim_(xto4)((cos alpha)^(x)-(sinalpha)^(x)-cos 2alpha)/(x-4), alpha epsilon(0,(pi)/2) is

The value of lim_(xto4)((cos alpha)^(x)-(sinalpha)^(x)-cos 2alpha)/(x-4), alpha epsilon(0,(pi)/2) is

The value of lim_(xto4)((cos alpha)^(x)-(sinalpha)^(x)-cos 2alpha)/(x-4), alpha epsilon(0,(pi)/2) is

lim_(alphato pi/4)(sinalpha-cosalpha)/(alpha-pi/4) is

int(cos2x-cos2alpha)/(cosx-cosalpha)dx

int(cos2x-cos2alpha)/(cosx-cosalpha)dx

int(cos2x-cos2alpha)/(cosx-cosalpha)dx