Home
Class 12
MATHS
ABCD is a tetrahedron and G is the centr...

ABCD is a tetrahedron and G is the centroid of the base BCD. Prove that `AB^2 + AC^2 + AD^2 = GB^2 + GC^2 + GD^2 + 3GA^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If G be the centroid of a triangle ABC, prove that, AB^2 + BC^2 + CA^2 = 3(GA^2 + GB^2 + GC^2)

If G be the centroid of a triangle ABC, prove that, AB^2+BC^2+CA^2=3(GA^2+GB^2+GC^2)

If G be the centroid of the Delta ABC , then prove that AB^2+BC^2+CA^2=3(GA^2+GB^2+GC^2)

In Figure 2, AD _|_ BC . Prove that AB^2 + CD^2 = BD^2 + AC^2 .

In the given fig. if AD bot BC Prove that AB^(2) + CD^(2) = BD^(2) + AC^(2) .

In the given fig. if AD bot BC Prove that AB^(2) + CD^(2) = BD^(2) + AC^(2) .

In Fig if AD bot BC , prove that AB^2 + CD^2 = BD^2 + AC^2 .

In the given fig. if AD bot BC , prove that AB^2 + CD^2 = BD^2 + AC^2 .

For a rhambus ABCD , prove that 4 AB ^(2) = AC^(2) + BD^(2)

In the given figure , BD bot AC .Prove that AB^2 +CD^2 = AD^2 +BC^2