Home
Class 12
MATHS
For the matrix A=[[1, 5],[ 6, 7]], verif...

For the matrix `A=[[1, 5],[ 6, 7]]`, verify that.
(i) `(A+A^(prime))`is a symmetric matrix
(ii) `(A-A^(prime))`is a skew symmetric matrix

Text Solution

Verified by Experts

Given
`A=[[1, 5],[ 6, 7]]`
`therefore` `A'=[[1,6],[5,7]]`
(i) `A+A'=[[1, 5],[ 6, 7]]+[[1,6],[5,7]]=[[2,11],[11,14]]`

`(A+A')'=[[2,11],[11,14]]`
since
`(A+A')'=A+A'`
Hence, `A+A'` is a symmetric matrix.
(ii) `A-A'=[[1, 5],[ 6, 7]]-[[1,6],[5,7]]=[[0,-1],[1,0]]`
`(A-A')'=[[0,1],[-1,0]]=-[[0,-1],[1,0]]=-(A-A')`
Since, `(A-A')'=-(A-A')`
Hence, `(A-A')`is a skew-symmetric matrix.
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

For the matrix A=[[1,5,-1],[6,7,2],[0,1,3]] verify that: (i) A+A^(T) is a Symmetric matrix. ii. A-A^(T) is a skew symmetric matrix.

for the matrix A=[{:(1,5),(6,7):}], verify that : (I) (A+A') is a symmetric matrix. (ii) (A-A') is a skew symmetric matrix.

If A is skew-symmetric matrix then A^(2) is a symmetric matrix.

Symmetric & Skew metric matrix

The inverse of a skew symmetric matrix is

A square matrix A is said skew - symmetric matrix if

Let A be a square matrix.Then prove that (i)A+A^(T) is a symmetric matrix,(ii) A-A^(T) is a skew-symmetric matrix and (iii)AA^(T) and A^(T)A are symmetric matrices.

If A is a symmetric matrix,write whether A^(T) is symmetric or skew-symmetric.

if B is skew symmetric matrix then find matrix ABA^(T) is symmetric or skew symmetric

Which of the following is a skew symmetric matrix?