Home
Class 12
MATHS
Let a and b be two positive real numbers...

Let a and b be two positive real numbers and `z_(1)` and `z_(2)` be two non-zero complex numbers such that `a|z_(1)|=b|z_(2)|`. If `z=(az_(1))/(bz_(2))+(bz_(2))/(az_(1))`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_(1) and z_(2), are two non-zero complex numbers such tha |z_(1)+z_(2)|=|z_(1)|+|z_(2)| then arg(z_(1))-arg(z_(2)) is equal to

Let z_(1) and z_(2) be two non-zero complex number such that |z_(1)|=|z_(2)|=|(1)/(z_(1)+(1)/(z_(2)))|=2 What is the value of |z_(1)+z_(2)| ?

Let z_(1),z_(2) be two complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| . Then,

Let z_(1),z_(2) be two complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| . Then,

If z_(1) and z_(2) are two non-zero complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| , then arg. z_(1)- arg. z_(2) equals :

If z_(1)" and "z_(2) are two non-zero complex numbers such that |z_(1)+z_(2)|=|z_1|+|z_(2)| , then arg ((z_1)/(z_2)) is equal to

If z_(1) and z_(2) are two non-zero complex number such that |z_(1)z_(2)|=2 and arg(z_(1))-arg(z_(2))=(pi)/(2) ,then the value of 3iz_(1)z_(2)

If z_(1)and z_(2) be any two non-zero complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| then prove that, arg z_(1)=arg z_(2) .

If z_(1) and z_(2) are non -zero complex numbers, then show that (z_(1) z_(2))^(-1)=z_(1)^(-1) z_(2)^(-1)

Let z_(1)" and "z_(2) be two complex numbers such that z_(1)z_(2)" and "z_(1)+z_(2) are real then