Home
Class 12
MATHS
सरणिको के गुणों का प्रयोग करके सिद्ध कीज...

सरणिको के गुणों का प्रयोग करके सिद्ध कीजिएः की `|{:(,a^(2)+2a,2a+1,1),(,2a+1,a+2,1),(,3,3,1):}|=(a-1)^(3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that |{:(a^2+2a,2a+1,1),(2a+1,a+2,1),(3,3,1):}|=(a-1)^3

D=|{:(a^2+2a,2a+1,1),(2a+1,a+2,1),(3,3,1):}| then,

Prove that: {:|(a^2+2a,2a+1,1), (2a+1,a+2,1),(3,3,1)|:}=(a-1)^3 .

Prove that |[a^2+2a,2a+1,1],[2a+1,a+2,1],[3,3,1]|=(a-1)^3

Using properties of determinants prove that |{:(a^2+2a,2a+1,1),(2a+1,a+2,1),(3,3,1):}|=(a-1)^3

Using properties of determinant, prove that |{:(a^(2)+2a, 2a+1, 1), (2a+1, a+2, 1), (3, 3, 1):}|=(a-1)^(3)

Prove that: |a^2+2a2a+1 1 2a+1a+2 1 3 3 1|=(a-1)^3 .

Using properties of determinants, prove that |(a^2+2a, 2a+1,1), (2a+1, a+2, 1), (3,3,1)| = (a-1)^3

Using properties of determinants, prove that |(a^2+2a, 2a+1,1), (2a+1, a+2, 1), (3,3,1)| = (a-1)^3