Home
Class 14
MATHS
ubrace((x)*f(x))(t(0)-)(sin(e^(x-2)-1))/...

ubrace((x)*f(x))_(t_(0)-)(sin(e^(x-2)-1))/(ln(x-1))," then "lim_(x rarr2)f(x)" is equal "

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) =(sin (e^(x-2)-))/(log(x-1)) then lim_(xrarr2)f(x) is given by

If f(x) = (sin (e^(x-2) - 1))/(log (x - 1)) , then lim_(x rarr 2) f(x) is given by :

let f(x)=(ln(x^(2)+e^(x)))/(ln(x^(4)+e^(2x))) then lim_(x rarr oo)f(x) is

Evaluate: lim_(x rarr2)(sin(e^(x-2)-1))/(log(x-1))

f(x)=e^x then lim_(x rarr 0) f(f(x))^(1/{f(x)} is

f(x)=("ln"(x^(2)+e^(x)))/("ln"(x^(4)+e^(2x))) . Then lim_(x to oo) f(x) is equal to

f(x)=("ln"(x^(2)+e^(x)))/("ln"(x^(4)+e^(2x))) . Then lim_(x to oo) f(x) is equal to

Let f(x) = {(x sin(1/x)+sin(1/x^2),; x!=0), (0,;x=0):}, then lim_(x rarr oo)f(x) is equal to